
Remy Belmonte remy.belmonte@dauphine.eu

Lab 6

Algorithmic and advanced

Programming in Python

1

Algorithmic and advanced Programming in Python

Problem 1: Implement DFS

• Upload corresponding code and fill the part of the code with

2

Algorithmic and advanced Programming in Python

Problem 2: Implement BFS

• Upload corresponding code and fill the part of the code with

3

Algorithmic and advanced Programming in Python

Problem 3: Hamiltonian path

• In the mathematical field of graph theory, a Hamiltonian path (or
traceable path) is a path in an undirected or directed graph that visits
each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit)
is a Hamiltonian path that is a cycle. Determining whether such paths
and cycles exist in graphs is the Hamiltonian path problem, which is
NP-complete.

4

Algorithmic and advanced Programming in Python

Problem 3: Hamiltonian path

• A bit of history: Hamiltonian paths and cycles are named after William
Rowan Hamilton who invented the icosian game, now also known as
Hamilton's puzzle, which involves finding a Hamiltonian cycle in the
edge graph of the dodecahedron. Hamilton solved this problem using
the icosian calculus, an algebraic structure based on roots of unity with
many similarities to the quaternions (also invented by Hamilton).

• Upload corresponding code and fill the part of the code with

5

Algorithmic and advanced Programming in Python

Problem 4: Dystra

• What do GPS navigation devices and websites for booking flights
have in common? As it turns out, a lot! For one, both technologies
employ Dijkstra’s shortest path algorithm.

6

Algorithmic and advanced Programming in Python

What Is Dijkstra’s Algorithm?

• A bit of history: In 1956, Dutch programmer Edsger W. Dijkstra had a
practical question. He wanted to figure out the shortest way to travel
from Rotterdam to Groningen. But he did not simply consult a map to
calculate the distances of the roads he would need to take. Instead,
Dijkstra took a computer scientist’s approach: he abstracted from the
problem by filtering out the specifics such as traveling from city A to
city B. This allowed him to discover the more general problem of
graph search. Thus, Dijkstra’s algorithm was born.

7

Algorithmic and advanced Programming in Python

A powerful algorithm

• Dijkstra’s algorithm is a popular search algorithm used to determine
the shortest path between two nodes in a graph. In the original
scenario, the graph represented the Netherlands, the graph’s nodes
represented different Dutch cities, and the edges represented the roads
between the cities.

• You can apply Dijkstra’s algorithm to any problem that can be
represented as a graph. Friend suggestions on social media, routing
packets over the internet, or finding a way through a maze—the
algorithm can do it all. But how does it actually work?

8

Algorithmic and advanced Programming in Python

Dijkstra’s Algorithm: Problem Setting

• Recall that Dijkstra’s algorithm operates on graphs, meaning that it
can address a problem only if it can be represented in a graph-like
structure. The example we’ll use throughout this tutorial is perhaps the
most intuitive: the shortest path between two cities.

• We’ll be working with the map below to figure out the best route
between the two European cities of Reykjavik and Belgrade. For the
sake of simplicity, let’s imagine that all cities are connected by roads
(a real-life route would involve at least one ferry).

9

Algorithmic and advanced Programming in Python

To keep it simple!

10

Algorithmic and advanced Programming in Python

Some color!
• Note the following:

• Each city is represented as a node.
• Each road is represented as an edge.
• Each road has an associated value. A value could be the distance between cities, a highway

toll, or the amount of traffic. Generally, we’ll favor edges with lower values. In our specific
case, the associated value is defined by the distance between two cities.

• You also may have noticed that we cannot reach Belgrade from Reykjavik
directly; that would render our exercise pointless. But there are several paths from
Reykjavik to Belgrade that go through other cities:

• Reykjavik –> Oslo –> Berlin –> Belgrade
• Reykjavik –> London –> Berlin –> Rome –> Athens –> Belgrade
• Reykjavik –> London –> Berlin –> Rome –> Athens –> Moscow –> Belgrade

• Each of these paths end in Belgrade, but they all have different values. We can use
Dijkstra’s algorithm to find the path with the lowest total value.

11

Algorithmic and advanced Programming in Python

Dijkstra’s Algorithm: Step-by-Step
• Before diving into the code, let’s start with a high-level illustration of Dijkstra’s

algorithm. First, we initialize the algorithm as follows:

1. We set Reykjavik as the starting node.

2. We set the distances between Reykjavik and all other cities to infinity, except for the
distance between Reykjavik and itself, which we set to 0.

• After that, we iteratively execute the following steps:

1. We choose the node with the smallest value as the “current node” and visit all of its
neighboring nodes. As we visit each neighbor, we update their tentative distance from
the starting node.

2. Once we visit all of the current node’s neighbors and update their distances, we mark
the current node as “visited.” Marking a node as “visited” means that we’ve arrived at
its final cost.

3. We go back to step one. The algorithm loops until it visits all the nodes in the graph.

12

Algorithmic and advanced Programming in Python

• In our example, we start by marking Reykjavik as the “current node”
since its value is 0. We proceed by visiting Reykjavik’s two
neighboring nodes: London and Oslo. At the beginning of the
algorithm, their values are set to infinity, but as we visit the nodes, we
update the value for London to 4, and Oslo to 5.

13

Algorithmic and advanced Programming in Python

On our example:

14

Algorithmic and advanced Programming in Python

Dystra follows

• We then mark Reykjavik as “visited.” We
know that its final cost is zero, and we
don’t need to visit it again. We continue
with the next node with the lowest value,
which is London.

• We visit all of London’s neighboring
nodes which we haven’t marked as
“visited.” London’s neighbors are
Reykjavik and Berlin, but we ignore
Reykjavik because we’ve already visited
it. Instead, we update Berlin’s value by
adding the value of the edge connecting
London and Berlin (3) to the value of
London (4), which gives us a value of 7.

15

Algorithmic and advanced Programming in Python

To continue

• We mark London as visited and
choose the next node: Oslo. We
visit Oslo’s neighbors and
update their values. It turns out
that we can better reach Berlin
through Oslo (with a value of
6) than through London, so we
update its value accordingly.
We also update the current
value of Moscow from infinity
to 8.

16

Algorithmic and advanced Programming in Python

To continue

• We mark Oslo as “visited”
and update its final value to 5.
Between Berlin and Moscow,
we choose Berlin as the next
node because its value (6) is
lower than Moscow’s (8). We
proceed as before: We visit
Rome and Belgrade and
update their tentative values,
before marking Berlin as
“visited” and moving on to
the next city.

17

Algorithmic and advanced Programming in Python

Finally

• Note that we’ve already found a path from Reykjavik to Belgrade with
a value of 15! But is it the best one?

• Ultimately, it’s not. We’ll skip the rest of the steps, but you get the
drill. The best path turns out to be Reykjavik –> Oslo –> Berlin –>
Rome –> Athens –> Belgrade, with a value of 11.

18

• Upload corresponding code and fill the part of the code with

Algorithmic and advanced Programming in Python

Problem 6- Kruskal’s algorithm

• Kruskal's algorithm is a minimum spanning tree algorithm that uses
the 𝑔𝑟𝑒𝑒𝑑𝑦 approach. This algorithm treats the graph as a forest and
every node it has as an individual tree. A tree connects to another only
and only if, it has the least cost among all available options and does
not violate MST properties. Kruskal’s Algorithm builds the spanning
tree by adding edges one by one into a growing spanning tree.

• The algorithm starts with V different trees (V is the vertices in the
graph). While constructing the minimum spanning tree, every time
Kruskal’s algorithm selects an edge that has minimum weight and then
adds that edge if it doesn’t create a cycle. So, initially, there are |V|
single-node trees in the forest. Adding an edge merges two trees into
one. When the algorithm is completed, there will be only one tree, and
that is the minimum spanning tree.

19

Algorithmic and advanced Programming in Python

Algorithm

• Instructions:

1. Sort the graph edges with respect to their weights.

2. Start adding edges to the minimum snapping tree from the edge with the
smallest weight until the edge of the largest weight.

3. Only add edges which doesn't form a cycle, edges which connect only
disconnected components.

• The greedy Choice is to put the smallest weight edge that does not
because a cycle in the MST constructed so far. There are two ways of
implementing Kruskal’s algorithm:

1. By using disjoint sets: Using UNION and FIND operations

2. By using priority queues: Maintains weights in priority queue

20

Algorithmic and advanced Programming in Python

Algorithm follows

• So now the question is how to check if vertices are connected or not?

• This could be done using DFS which starts from the first vertex, then
check if the second vertex is visited or not. But DFS will make time
complexity large as it has an order of O(E+V) where V is the number
of vertices, E is the number of edges. Disjoint sets are sets whose
intersection is the empty set so it means that they don't have any
element in common.

• The appropriate data structure is the UNION/FIND algorithm [for
implementing forests]. Two vertices belong to the same set if and only
if they are connected in the current spanning forest. Each vertex is
initially in its own set. If 𝑢 and 𝑣 are in the same set, the edge is
rejected because it forms a cycle. Otherwise, the edge is accepted, and
a UNION is performed on the two sets containing 𝑢 and 𝑣.

21

Algorithmic and advanced Programming in Python

Example

• As an example, consider the following graph (the edges show the
weights). The issue is to relate with fiber optics the towns A, B, C, D,
D, F, G. Cable cost are given in the graph

22

Algorithmic and advanced Programming in Python

Example follows

• Now let us perform Kruskal’s algorithm on this graph. We always
select the edge which has minimum weight.

23

Algorithmic and advanced Programming in Python

Example follows

24

Algorithmic and advanced Programming in Python

Example follows

25

Algorithmic and advanced Programming in Python

Example follows

26

• Upload corresponding code and fill the part of the code with

